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a b s t r a c t

We place the Blundell–Bond paper in the context of the early development of panel data
estimators that accounted for unobserved heterogeneity, dynamics and persistent eco-
nomic series. The initial work focused on appropriate econometric methods to estimate
dynamic models using unbalanced panel data with many firms and/or individuals but
covering a small number of time periods. Eliminating the unobserved firm-specific ‘fixed’
effects by taking first-differences and using as instruments suitably lagged values of the
dependent variable, and of endogenous or predetermined explanatory variables, led to
the first-differenced GMM estimators popularised by Arellano and Bond (1991). This
approach was less well suited to models which relate highly persistent series. Following
Arellano and Bover (1995) we examined the use of suitably lagged first-differences as
instruments for the equations in levels and derived the conditions, particularly on initial
conditions, under which first-differences of the dependent variable would or would not
be uncorrelated with individual-specific ‘fixed’ effects. An influential contribution was
to illustrate the magnitude of the bias when the first-differenced GMM estimator is
used to estimate autoregressive models for highly persistent series, and the potential to
reduce that bias by using additional valid moment conditions for the equations in levels
— thereby popularising the use of these extended or ‘System’ GMM estimators.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

By the late 1980s, new panel data sources on firms and on households were rapidly becoming available and were
ccompanied by a flurry of substantive questions on the drivers of productivity, investment, innovation, labour demand,
abour supply, and earnings. These were pressing questions in the economics research and policy community. They
rought together researchers in microeconometrics and in empirical economics with a shared sense of excitement and
ollaboration. Reliable answers to these questions required an empirical methodology that incorporated dynamics in
ehaviour and accounted for the time-series properties of the underlying economic series. The likely importance of
ifferences across people and firms, underlying concerns about unobserved heterogeneity, further motivated the use of
anel data.
The origins of the Blundell and Bond (1998) paper date back to this period. More precisely to 1987 and a research

rogramme at the Institute for Fiscal Studies (IFS), funded by the UK Economic and Social Research Council (ESRC), which
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imed to develop microeconometric models of company investment using panel data from annual company accounts.
lundell, who had recently been appointed as Research Director at IFS, approached Manuel Arellano for advice on
ppropriate econometric methods to estimate dynamic models using unbalanced panel data for many firms but covering a
mall number of time periods. Arellano, who was then a postdoc at the University of Oxford, advised that unobserved firm-
pecific ‘fixed’ effects could be eliminated by taking first-differences, with suitably lagged values of the dependent variable,
nd of endogenous or predetermined explanatory variables, available to use as instruments in the resulting system of
irst-differenced equations, provided that the time-varying component of the error term of the equations in levels was
erially uncorrelated. Lars Hansen’s (1982) Generalised Method of Moments (GMM) provided a natural framework to
btain asymptotically efficient estimators based on these moment conditions.
Arellano’s advice was followed and implemented in Blundell et al. (1992), one of the first papers to estimate the

ayashi (1982) Q model of investment using firm-level panel data.1 Spotting the wider potential of this approach, Blundell
encouraged Arellano to collaborate with Bond, who was then a pre-doctoral researcher working on the investment project
at IFS, both to investigate thoroughly the properties of the first-differenced GMM estimator, and to develop software which
would make the estimator more accessible to other researchers. This collaboration led to the widely cited Arellano and
Bond (1991) paper, and to the development of their DPD code for Gauss, which undoubtedly contributed to the success
of that paper.

Notwithstanding the success of the first-differenced GMM estimator in estimating models which related stationary
series like company investment rates and measures of average Q, and the desirable properties illustrated by the Monte
Carlo analysis in Arellano and Bond (1991), doubts were expressed about the reliance on lagged levels of variables
as instruments for subsequent first-differences. Such concerns were raised most memorably in discussions with Zvi
Griliches, whose chief interest was in the potential to use the method to estimate firm-level production functions, relating
logarithms of firm-level input and output measures. These production variables exhibit time-series properties very close
to random walks, with little correlation between first-differences and lagged levels, suggesting that the instruments used
by the first-differenced GMM estimator could be worryingly weak.

The use of additional moment conditions for equations in levels was discussed in Arellano and Bond (1991), but only in
the context of explanatory variables which themselves are assumed to be uncorrelated with the time-invariant component
of the error term. The breakthrough in Arellano and Bover (1995) was the observation that if the covariance between an
explanatory variable and the time-invariant error component is not zero but is constant over time, then first-differences of
that explanatory variable are uncorrelated with that error component, and suitably lagged first-differences are available as
instruments for the equations in levels, in addition to the moment conditions for the first-differenced equations discussed
in Arellano and Bond (1991).

This idea was quickly incorporated into the DPD software, and started to be used in empirical work. Our initial plan for
what became the Blundell and Bond (1998) paper was simply to write a survey of those recent developments, covering
both Griliches’ concern about the weakness of the instruments used by the first-differenced GMM estimator for models
relating highly persistent series, and the potential advantages of using additional moment conditions for the equations
in levels, with suitably lagged differences as the instruments. The key importance of initial conditions in designing
improved estimators for dynamic models was becoming more clearly understood, for example in Blundell and Smith
(1991). However, as we began to work on that survey, it became apparent that there were too many unanswered questions
simply to review the existing contributions. While there was already a general literature characterising the consequences
of using weak instruments, we found no formal discussion in the setting of first-differenced equations for autoregressive
panel data models with lagged levels used as instruments. While the Monte Carlo design in Arellano and Bover (1995)
used an AR(1) specification, we found no discussion of the conditions under which first-differences of the dependent
variable would or would not be uncorrelated with individual-specific ‘fixed’ effects in that setting. And how did using
these additional linear moment conditions for the equations in levels compare to using the additional non-linear moment
conditions which had been mentioned briefly by Arellano and Bond (1991) and discussed extensively by Ahn and Schmidt
(1995)?

Consequently our focus shifted towards filling those gaps. Although the main impact of our paper may well have
stemmed from the Monte Carlo results, which illustrated both the magnitude of the bias when the first-differenced
GMM estimator is used to estimate autoregressive models for highly persistent series – as suspected by Griliches – and
the potential for reducing that bias by using additional valid moment conditions for the equations in levels – thereby
popularising the use of these extended or ‘system’ GMM estimators – we also managed to include sufficient analytical
content for the paper to be published in the Journal of Econometrics.

2. Some econometric history

Here we briefly provide the dynamic panel data setting for the Blundell–Bond estimator.

1 Allowing for an AR(1) component in the error term of the Q model was found to be important for obtaining valid moment conditions. This
was a specification that we returned to in the Blundell and Bond (2000) paper on the estimation of production functions.
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.1. Dynamic linear models

Consider

yit = αyi,t−1 + xitβ + (ηi + vit ) |α| < 1

for i = 1, . . . ,N and t = 2, . . . , T . Note the initial observation is yi1, so that the first available equation is

yi2 = αyi1 + xi2β + (ηi + vi2)

and we have T − 1 equations in levels.2 First suppose E[xitηi] = 0 and E[xitvit ] = 0. Two important properties of the
lagged dependent variable are immediately evident: E[yi,t−1ηi] > 0 since ηi is part of the process that generates yi,t−1
according to our specification. Similarly E[yi,t−1vi,t−1] > 0. Thus yi,t−1 is correlated with the individual effects, and is not
strictly exogenous.

Focusing on the simpler dynamic model

yit = αyi,t−1 + (ηi + vit ) |α| < 1

it is useful to briefly establish the properties of pooled OLS and Within Groups estimators in this setting. Assuming
E[yi,t−1vit ] = 0, then p lim α̂OLS > α as a result of the positive correlation between yi,t−1 and ηi. Now consider the
within-transformed explanatory variable

ỹi,t−1 = yi,t−1 −
1

T − 1
(yi1 + · · · + yi,T−1)

and error term

ṽit = vit −
1

T − 1
(vi2 + · · · + viT )

Notice that all correlations of order 1
T−1 are negative, e.g. corr(yi,t−1,

−1
T−1vi,t−1) and corr(vit ,

−1
T−1yit ). This suggests that

[̃yi,t−1̃vit ] < 0 and is of order 1
T−1 (i.e. E [̃yi,t−1̃vit ] → 0 as (T − 1) → ∞). These properties can be shown more formally,

.g. Nickell (1981). Thus p limN→∞ α̂WG < α for fixed T .
The inconsistency of the Within Groups estimator is of order 1

T−1 and the bias can be substantial when T < 10, and can
emain non-negligible when T < 20. Also note that the inconsistency does not disappear as α → 0. So, unless T is large,
the Within estimator does not provide reliable evidence on whether a lagged dependent variable should be included in
the model or not. However, in practice it is useful to know that, for the coefficient on a lagged dependent variable, OLS
levels is likely to be biased upwards, and (in short panels) Within Groups is likely to be biased downwards. Supposedly
consistent estimators that give α̂ ≫ α̂OLS or α̂ ≪ α̂WG should be viewed with suspicion.

2.2. Instrumental variables

A popular class of estimators that are consistent as N → ∞ with T fixed first transform the model to eliminate the
ndividual effects, and then apply instrumental variables.

The Within transformation is not so useful in this context, since it introduces the shocks from all time periods into the
ransformed error term, ṽit . That is, a valid instrument zit must satisfy the strict exogeneity assumption E[zitvis] = 0 for
ll s, t . The first-differencing transformation is more promising. Taking first-differences, we have

∆yit = α∆yi,t−1 + ∆vit

for i = 1, . . . ,N and t = 3, . . . , T .
First-differenced OLS is not consistent (as N → ∞ or T → ∞, or both), since ∆yi,t−1 = yi,t−1 − yi,t−2 and

vit = vit − vi,t−1, we have

E[∆yi,t−1∆vit ] < 0

even if E[yi,t−1vit ] = 0. However, if we are willing to assume that E[yi,t−1vit ] = 0, then yi,t−2 or ∆yi,t−2 are valid
nstrumental variables for ∆yi,t−1 in the first-differenced equations. Two-stage least squares (2SLS) estimators of this
ype were suggested by Anderson and Hsiao (1981) e.g.

α̂AH = (∆y′

−1Z(Z
′Z)−1Z ′∆y−1)−1∆y′

−1Z(Z
′Z)−1Z ′∆y

here ∆y is the stacked N(T−2)×1 vector of observations on ∆yit , ∆y−1 is the stacked N(T−2)×1 vector of observations
n ∆yi,t−1, and Z is the stacked N(T − 2) × 1 vector of observations on yi,t−2. One further time series observation is lost
f ∆yi,t−2 rather than yi,t−2 is used as the instrument.

2 Some authors assume y is observed, and thus have T equations in levels.
i0
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The assumption that yi,t−1 is predetermined follows naturally from assuming that the vit are serially uncorrelated
hocks, provided the initial conditions (yi1) are also uncorrelated with subsequent vit shocks. Note that a minimum of
= 3 time series observations are required to identify α using this approach. With T = 3, we have one instrument yi1

or ∆yi2 in the equation

∆yi3 = α∆yi2 + ∆vi3 for i = 1, . . . ,N

he Anderson–Hsiao 2SLS estimators are consistent as N → ∞ for fixed T . But they are not efficient, except in the special
ase with T = 3. With T > 3, further valid instruments become available for the first-differenced equations in the later
ime periods. Efficiency can be improved by exploiting these additional instruments.

The transformed error term ∆vit also has a known moving average form of serial correlation, under the maintained
ssumption that vit is serially uncorrelated. More generally, ∆vit may be heteroskedastic. These features can be exploited
o improve efficiency when T > 3 (i.e. when the parameter α is overidentified).

.3. Generalised method of moments (GMM)

GMM formulates a set of orthogonality restrictions (moment conditions) related to an econometric model, and finds
arameter estimates that come as close as possible to achieving these orthogonality properties in the sample. Holtz-Eakin
t al. (1988) and Arellano and Bond (1991) applied the generalised method of moments approach developed by Hansen
1982) to exploit this additional information in the dynamic panel data problem.

For the AR(1) panel data model we assume the following:
Assumption (error components)

E(ηi) = E(vit ) = E(ηivit ) = 0 for t = 2, . . . , T

Assumption (serially uncorrelated shocks)

E(visvit ) = 0 for s ̸= t

Assumption (predetermined initial conditions)

E(yi1vit ) = 0 for t = 2, . . . , T

hese assumptions specify a finite number of linear moment conditions, which can be exploited using a linear GMM
stimator.

First-differenced equations Valid instruments
(yi3 − yi2) = α(yi2 − yi1) + (vi3 − vi2) yi1
(yi4 − yi3) = α(yi3 − yi2) + (vi4 − vi3) yi1, yi2

...

(yiT − yi,T−1) = α(yi,T−1 − yi,T−2) + (viT − vi,T−1) yi1, yi2, . . . , yi,T−2

learly E(yi1∆vi3) = 0 follows from assuming predetermined initial conditions, and E(yi1∆vi4) = 0 follows analogously.
ince yi2 = αyi1 + ηi + vi2, the stated assumptions imply E(yi2∆vi4) = 0.
Similar arguments establish the m = (T − 2)(T − 1)/2 moment conditions

E(yi,t−s∆vit ) = 0 for t = 3, . . . , T and s ≥ 2

his gives the set of valid instruments proposed in the previous table. These can also be written as E(Z ′

i∆vi) = 0 where

Zi =

⎛⎜⎜⎝
yi1 0 0 . . . 0 0 . . . 0
0 yi1 yi2 . . . 0 0 . . . 0
...

...
...

. . .
...

...
...

0 0 0 . . . yi1 yi2 . . . yi,T−2

⎞⎟⎟⎠ and ∆vi =

⎛⎜⎜⎝
∆vi3
∆vi4

...

∆viT

⎞⎟⎟⎠
(T − 2) × m (T − 2) × 1

nd we define the sample analogue

bN (α) =
1
N

N∑
i=1

Z ′

i∆vi(α)

For T = 3, we have 1 moment condition E(yi1∆vi3) = 0 and 1 parameter. α is just identified, the choice of the weight
atrix is irrelevant, and the optimal GMM estimator coincides with the Anderson–Hsiao 2SLS estimator (using the level

as the instrument). For T > 3, we have m > 1 moment conditions. α is overidentified.
i,t−2
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GMM estimators minimise a weighted quadratic distance

α̂GMM = argmin
α

JN (α) = bN (α)′WNbN (α)

= argmin
α

(
1
N

N∑
i=1

∆v′

iZi

)
WN

(
1
N

N∑
i=1

Z ′

i∆vi

)

= (∆y′

−1ZWNZ ′∆y−1)−1∆y′

−1ZWNZ ′∆y

for some positive definite m xmweight matrixWN , where ∆y and ∆y−1 are the stacked N(T−2)×1 vectors of observations
on ∆yit and ∆yi,t−1 as before, and Z = (Z1, . . . , ZN )′ is the stacked N(T −2)×m matrix of observations on the instruments.

Comparing

α̂GMM = (∆y′

−1ZWNZ ′∆y−1)−1∆y′

−1ZWNZ ′∆y

and

α̂AH = (∆y′

−1Z(Z
′Z)−1Z ′∆y−1)−1∆y′

−1Z(Z
′Z)−1Z ′∆y

note that for T > 3, there are two sources of greater (asymptotic) efficiency: α̂GMM exploits more moment conditions
( m > 1), and the 2SLS weight matrix (WN = (Z ′Z)−1) is not optimal for the first-differenced specification under the
maintained assumptions.

General results for GMM estimators indicate that α̂GMM is strongly consistent (as N → ∞ for fixed T ) and
asymptotically normal. For an arbitrary WN

avar (̂αGMM ) = N(∆y′

−1ZWNZ ′∆y−1)−1∆y′

−1ZWN V̂NWNZ ′∆y−1(∆y′

−1ZWNZ ′∆y−1)−1

where

V̂N =
1
N

N∑
i=1

(
Z ′

i ∆̂vi∆̂v
′

iZi
)

nd ∆̂vit = ∆yit − α̂ ∆yi,t−1 are first-differenced residuals, based on some consistent initial estimator α̂.
The optimal (two step) GMM estimator thus sets WN = V̂−1

N , or

WN =

(
1
N

N∑
i=1

Z ′

i ∆̂vi∆̂v
′

iZi

)−1

giving

avar (̂αGMM ) = N(∆y′

−1ZWNZ ′∆y−1)−1

For the special case in which vit ∼ iid(0, σ 2
v ), we can obtain a one step GMM estimator that is asymptotically equivalent to

two step GMM.3 For the first-differenced equations, this choice is not 2SLS, due to the serial correlation in ∆vit introduced
y the first-differencing transformation.
While asymptotic results for the two step estimator only require an initial estimator that is consistent, small sample

roperties tend to be better when the estimate of the optimal weight matrix WN stated above uses residuals ∆̂vi based
on an initial estimator that is also as efficient as possible.

Making explicit the dependence of the estimated optimal weight matrix on the initial consistent estimator

WN (̂α) =

(
1
N

N∑
i=1

(
Z ′

i ∆̂vi (̂α)∆̂vi (̂α)′Zi
))−1

ndicates a small sample problem with the usual estimate of the asymptotic variance for the two step GMM estimator
tated above. This neglects variation introduced by using an estimate α̂ to construct the optimal weight matrix. In
ery large samples, this variation is negligible, and the usual expression for the asymptotic variance is correct. But in
reasonably large) finite samples, this additional variation makes two step inference based on avar (̂αGMM ) unreliable. In
act, avar (̂αGMM ) provides a good estimate of the variance of an infeasible GMM estimator, which uses the true value α
ather than the initial estimate α̂ to construct the optimal weight matrix.

Windmeijer (2005) proposes a finite sample correction that provides more accurate estimates of the variance of (linear)
wo step GMM estimators. t-tests based on these corrected standard errors are found to be as reliable as those based on
he one step GMM estimator (where no parameters are estimated in the construction of the weight matrix).

3 For each i, the (T − 2)× (T − 2) matrix ∆̂vi∆̂v
′

i in the expression for WN is replaced by a matrix with main diagonal elements equal to 2, first
ff-diagonal elements equal to −1, and all other elements equal to zero. The variance of ∆vi is proportional to that known matrix in this special
ase.
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The simple linear (generalised instrumental variables) expressions for these GMM estimators follows from the linearity

f the moment conditions in α

E(yi,t−s∆vit ) = E(yi,t−s(∆yit − α∆yi,t−1))
= E(yi,t−s∆yit ) − αE(yi,t−s∆yi,t−1) = 0

The ‘standard assumptions’ stated earlier imply a further T − 3 moment conditions that are quadratic in α. These can be
written either as

E(∆vi,t−1uit ) = 0 for t = 4, . . . , T

or as

E(∆uisuiT ) = 0 for s = 3, 4, . . . , (T − 1)

where uit = ηi + vit is the error term for the untransformed equations in levels. Exploiting these additional moment
conditions requires numerical optimisation procedures, and has been less common in practice. The resulting optimal
non-linear GMM estimator is efficient for this model under the ‘standard assumptions’ stated previously, whereas the
linear ‘Arellano–Bond’ GMM estimator is not. See Ahn and Schmidt (1995) for further discussion.

2.4. Weak instruments

Instrumental variables (and GMM) estimators have poor small sample properties in cases where the instruments,
although valid, are only weakly correlated with the endogenous explanatory variables. This is relevant for the first-
differenced GMM estimator in the AR(1) model in the case where α → 1. By analogy with random walks (innovations
uncorrelated with past levels), the correlation between ∆yi,t−1 and the lagged levels yi,t−s for s ≥ 2 becomes weaker as
α → 1.

In the model

yit = αyi,t−1 + (ηi + vit )

α remains formally identified as α → 1, and the first-differenced GMM estimator remains consistent as N → ∞, provided
E(η2

i ) ̸= 0. At α = 1 we have

∆yi,t−1 = ηi + vi,t−1 and ∆yi,t−2 = ηi + vi,t−2

so that

E(∆yi,t−1∆yi,t−2) = E(η2
i ) ̸= 0

∆yi,t−2 is not a completely uninformative instrument for ∆yi,t−1 in the first-differenced equations.
Nevertheless, the Monte Carlo evidence presented in the Blundell and Bond (1998) paper, suggests that first-differenced

GMM estimators become very imprecise, and subject to serious finite sample biases, for values of α around 0.8 and above,
unless the available samples are huge. The finite sample bias is found to be downward, in the direction of the Within
estimator, consistent with findings for 2SLS estimators in some simple cases where the weak instruments problem has
been studied analytically.

Note also that if we combine

yit = ηi + εit

εit = αεi,t−1 + vit

we obtain the alternative specification

yit − αyi,t−1 = ηi − αηi + εit − αεi,t−1

or

yit = αyi,t−1 + (1 − α)ηi + vit

In this specification, the process for yit approaches a pure random walk as α → 1 (rather than a random walk with
individual-specific drifts). Now at α = 1, we have

∆yi,t−1 = vi,t−1

Consequently lagged levels are completely uninformative instruments for ∆yi,t−1 in the limit case with α = 1, and α is
not identified using only the moment conditions

E(yi,t−s∆vit ) = 0 for t = 3, . . . , T and s ≥ 2

for equations in first-differences. Although in this specification the OLS levels estimator is consistent when α = 1. In this
case a consistent test of the null hypothesis that α = 1 can thus be obtained using a simple t-test based on the pooled

OLS estimator of α.
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.1. ‘System GMM’

Now consider the simple linear dynamic panel data model:

yit = αyi,t−1 + ηi + vit |α| < 1

for i = 1, . . . ,N and t = 2, . . . , T under the assumptions stated above, and the additional (initial conditions) assumption

E(∆yi2ηi) = 0.

This additional assumption has two implications.
(i) Now we have E(∆yisηi) = 0 for s = 2, . . . , T , since the AR(1) specification implies

∆yit = α∆yi,t−1 + ∆vit = α[α∆yi,t−2 + ∆vi,t−1] + ∆vit

= α2∆yi,t−2 + ∆vit + α∆vi,t−1

...

= αt−2∆yi2 +

t−3∑
s=0

αs∆vi,t−s for t = 3, . . . , T

This then implies an additional T − 2 non-redundant linear moment conditions for the equations in levels, which can be
written (for example) as

E(∆yisuiT ) = 0 for s = 2, 3, . . . , (T − 1)

(ii) Given these additional linear moment restrictions, the quadratic moment restrictions are now redundant. For
example, the product

∆uisuiT = (∆yis − α∆yi,s−1)uiT

= ∆yisuiT − α∆yi,s−1uiT

so that E(∆yisuiT ) = 0 and E(∆yi,s−1uiT ) = 0 jointly imply E(∆uisuiT ) = 0. Conveniently, the complete set of moment
conditions implied by our standard assumptions and the initial conditions restriction E(∆yi2ηi) = 0 can then be written
as

E(yi,t−s∆vit ) = 0 for t = 3, . . . , T and s ≥ 2

and

E(∆yisuiT ) = 0 for s = 2, 3, . . . , (T − 1)

and can thus be exploited using a linear GMM estimator.
However this is not just a matter of convenience. When this additional initial conditions assumption is valid, exploiting

these additional moment conditions for the equations in levels can provide a dramatic improvement in efficiency, and
reduction in finite sample bias, compared to the basic first-differenced GMM estimator, in cases where α → 1, or as
the yit series becomes more persistent. In this case the correlation between ∆yi,t−1 and lagged levels yi,t−s for s ≥ 2
becomes weaker, and first-differenced GMM has poor finite sample properties associated with weak instruments —
imprecise parameter estimates, and serious finite sample bias. In this context, exploiting the quadratic moment conditions
could make a substantial improvement (Ahn and Schmidt, 1995). The Monte Carlo evidence presented in Blundell and
Bond (1998) indicates that exploiting the additional linear moment conditions implied by this restriction on the initial
conditions provides much more dramatic gains, provided that the additional initial conditions restriction is valid.

3.2. A restriction on the initial conditions?

The AR(1) specification determines yi2 given yi1, so to guarantee that ∆yi2 is uncorrelated with ηi we require a
estriction on the behaviour of yi1.

This is a form of stationarity restriction on the yit series. The representation

∆yit = αt−2∆yi2 +

t−3∑
s=0

αs∆vi,t−s for t = 3, . . . , T

suggests (using backward recursion for earlier periods) that if the same model has generated the yit series for long enough
rior to our sample period, the observations on ∆y would indeed be uncorrelated with η . ‘Long enough’ means long
it i
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nough for any influence of the true start-up of the process to have become negligibly small (which in turn depends on
he true value of α).

More formally, we can write

yi2 = αyi1 + ηi + vi2

(yi2 − yi1) = (α − 1)yi1 + ηi + vi2

nd decompose

yi1 =

(
ηi

1 − α

)
+ ei1.

Then

∆yi2 = (α − 1)
(

ηi

1 − α

)
+ (α − 1)ei1 + ηi + vi2

= (α − 1)ei1 + vi2.

The standard error components assumption implies E(vi2ηi) = 0. A sufficient condition for E(∆yi2ηi) = 0 is thus the
estriction

E(ei1ηi) = 0

.3. Interpretation

Note that
(

ηi
1−α

)
is the level that our model specifies the yit series will converge towards for individual i , if the process

continues for long enough. ei1 = yi1 −
(

ηi
1−α

)
is the deviation from this convergent level at the start of our sample period.

We require that these initial deviations are uncorrelated with ηi, or equivalently are uncorrelated with the convergent
evel itself. The initial observations yi1 can deviate randomly, but not systematically, from these convergent levels. This
mposes a stationarity restriction on the mean of the yit series, sometimes known as ‘mean stationarity’, but does not
impose any restriction on the variance.

Whether this initial condition restriction is mild or strong will depend on the context, and particularly on the nature
of the initial observations in our sample. As noted earlier, the restriction will hold automatically if the same process has
generated the yit series for long enough before the start of our sample period. Thus if we believe the AR(1) specification,
nd there is nothing special about our first observation period, it is reasonable to expect this restriction to hold. But if
ur first observation corresponds to the true start-up of the process, it may be an unreasonable restriction.
Computation of the extended (or ‘system’) GMM estimator is similar to the case discussed in Arellano and Bover (1995)

n which suitably lagged first-differences of additional explanatory variables (xit ) can be used to obtain instruments for
the equation(s) in levels. We add one (or more) equation(s) in levels to the set of first-differenced equations, for example

y+

i = αy+

i(−1) + u+

i⎛⎜⎜⎝
∆yi3

...

∆yiT
yiT

⎞⎟⎟⎠ = α

⎛⎜⎜⎝
∆yi2

...

∆yi,T−1
yi,T−1

⎞⎟⎟⎠+

⎛⎜⎜⎝
∆vi3

...

∆viT
ηi + viT

⎞⎟⎟⎠
and write the complete set of moment conditions as E(Z+′

i u+

i ) = 0, where

Z+

i =

(
Zi 0 . . . 0
0 ∆yi2 . . . ∆yi,T−1

)
and Zi was defined above.

Now defining bN (α) =
1
N

∑N
i=1 Z

+′

i u+

i (α) and choosing α to minimise JN (α) = bN (α)′WNbN (α) gives

α̂GMM = (y+′

−1Z
+WNZ+′y+

−1)
−1y+′

−1Z
+WNZ+′y+

or some positive definite weight matrix WN .4
In general there is more than one equivalent representation of the available non-redundant moment conditions. We

ould use more moment conditions for the equations in levels, and fewer moment conditions for the equations in first-
ifferences. However, we cannot express all the available moment conditions using only the equations in first-differences,

4 When we combine equations in first-differences and equation(s) in levels, there is no special case with unobserved heterogeneity in the form
of individual-specific fixed effects (E(η2

i ) > 0) in which E((u+

i )(u
+

i )
T ) is proportional to a known matrix. As a result, there is no compelling choice of

the weight matrix to obtain one step or initial consistent GMM estimators of this type. In practice it is advisable to assess the sensitivity of results
to alternative reasonable choices.
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r only the equations in levels. This is why we form an extended ‘system’ with both types of equations. Using all the
vailable moment conditions for the equations in first-differences facilitates testing the validity of the additional moment
onditions for the equations in levels (implied by the additional initial conditions restriction).
There are many extensions to the simple framework we have described here. The system GMM estimator extends to

utoregressive models with low order MA and/or AR forms of serial correlation in the time-varying error component (vit ),
and to models with additional explanatory variables (xit ), provided that the first-differences of these explanatory variables
are uncorrelated with ηi. The Blundell and Bond (2000) paper on the estimation of production functions discusses an
example with both these features, while Blundell et al. (2001) discusses conditions under which first-differences of the
dependent variable are uncorrelated with ηi in linear dynamic models with additional explanatory variables. Note also
that there is no requirement for a lagged dependent variable to be included in the model for these estimation methods
to be useful.

The basic specification test for GMM estimators is the Sargan (1958) and Hansen (1982) test of overidentifying
restrictions (or J test). An extension of this test procedure can be used to test nested hypotheses, where (only) a subset of
the moment conditions that are valid under the null hypothesis remain valid under a less restrictive alternative hypothesis.
Similarly, the Hausman test has the same sequential reasoning as the Difference Sargan/Hansen test, but focuses on the
difference in the estimated parameter vectors under the null and under the alternative, rather than on the difference in
the corresponding Sargan/Hansen test statistics. Arellano and Bond (1991) proposed a direct test for serial correlation in
the residuals of the first-differenced equations. The Difference Sargan/Hansen and Hausman test procedures can also be
used to test assumptions about the status of xit explanatory variables, and to test the initial conditions restriction required
for lagged values of ∆yis to be valid instruments in the levels equations.

4. Software

One important factor which has underpinned the popularity of Blundell–Bond estimators in applied work has been
the availability of software which implements the method. Already in 1998, estimators which combined linear moment
conditions for equations in levels with those for equations in first-differences were implemented in the open source DPD
code for Gauss, written by Arellano and Bond and distributed through the IFS.5 This was the code used to produce the
empirical applications described in the Blundell and Bond (1998) paper, and in the subsequent Blundell and Bond (2000)
paper on the estimation of production functions.

Access was extended beyond the community of Gauss users with the introduction of a DPD package for Oxmetrics,
written by Jurgen Doornik and documented in Doornik et al. (1999). A landmark development was the introduction in 2003
of David Roodman’s xtabond2 add-on command for Stata (see (Roodman, 2009)). This command allowed these extended or
‘system’ GMM estimators, incorporating moment conditions for equations in levels with suitably lagged first-differences
of variables as the instruments, to be computed within the popular Stata environment. Another important feature of
xtabond2 was the inclusion of the Windmeijer (2005) finite sample correction for the variance of two step linear GMM
estimators, which enabled reliable inference to be based on the asymptotically efficient version of these estimators.6

The popularity of Roodman’s xtabond2 command for Stata effectively put an end to development of the DPD code
for Gauss. This command was soon incorporated in our teaching and used in our own empirical work, and remained
the leading implementation of these estimators for many years. More recently, the introduction of Sebastian Kripfganz’s
xtdpdgmm add-on command for Stata has added an implementation of estimators which incorporate the non-linear
moment conditions discussed in Ahn and Schmidt (1995), as an alternative to the linear moment conditions for equations
in levels discussed in Arellano and Bover (1995) and Blundell and Bond (1998).7At the time of writing, the xtdpdgmm
command for Stata would be our recommended implementation of these extended GMM estimators for dynamic panel
data models.8

5 The earliest version was documented in Arellano and Bond (1988). The latest version was documented in Arellano and Bond (1998), and is still
available from the IFS web site.
6 Neither ‘system’ GMM estimators nor Windmeijer-corrected standard errors were available in the first version of Stata’s official xtabond

command, although these features have since been added to xtabond, and to Stata’s later xtdpd and xtdpdsys commands.
7 See Kripfganz (2019). The xtdpdgmm command also corrects some known bugs in the xtabond2 command, which can affect the reported

degrees of freedom for tests of overidentifying restrictions in some circumstances. Other recent developments include the introduction of commands
which implement these estimators in R, including the pgmm function within the plm package (Croissant and Millo, 2019), and the pdynmc package
(Fritsch et al., 2021).
8 We remain less keen on the default choice for the one step weight matrix used by both xtdpdgmm and xtabond2 when equations in levels are

combined with equations in first-differences. This weight matrix is asymptotically efficient only in the absence of a time-invariant unobserved
component (ηi) in the error term of the equations in levels, while it is the presence of such unobserved heterogeneity which motivates the
evelopment and use of these GMM estimators for panel data. However we appreciate that both these commands allow the sensitivity of the
esults to alternative choices for the one step weight matrix to be assessed.
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. Summary and conclusions

In this commentary we have placed the Blundell and Bond (1998) paper in the context of the early development of
anel data estimators that accounted for dynamics and persistent economic series. The ideas grew out of the increasing
mpirical interest in panel data models of individual and firm behaviour. The initial work focused on appropriate
conometric methods to estimate dynamic models using unbalanced panel data with many firms and/or individuals
ut covering a small number of time periods. A natural approach noted that unobserved firm-specific ‘fixed’ effects
ould be eliminated by taking first-differences, while using suitably lagged values of the dependent variable, and of
ndogenous or predetermined explanatory variables, as instruments. Generalised Method of Moments (GMM) provided
natural framework to obtain asymptotically efficient estimators based on these moment conditions. This approach was
opularised by Arellano and Bond (1991) and their DPD software. The breakthrough in Arellano and Bover (1995) was to
how that, under certain conditions, suitably lagged first-differences of explanatory variables are available as instruments
or the equations in levels. One contribution of our paper was to derive the conditions under which first-differences
f the dependent variable would or would not be uncorrelated with individual-specific ‘fixed’ effects in autoregressive
odels. Another influential contribution was to highlight both the magnitude of the bias when the first-differenced GMM
stimator is used to estimate autoregressive models for highly persistent series, and the potential to reduce that bias by
sing additional valid moment conditions for the equations in levels — thereby popularising the use of these extended or
system’ GMM estimators.
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